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Abstract—Skeleton-based human action recognition aims to
classify human skeletal sequences, which are spatiotemporal
representations of actions, into predefined categories. To reduce
the reliance on costly annotations of skeletal sequences while
maintaining competitive recognition accuracy, the task of 3D
Action Recognition with Limited Training Samples, also known
as semi-supervised 3D Action Recognition, has been proposed. In
addition, active learning, which aims to proactively select the most
informative unlabeled samples for annotation, has been explored
in semi-supervised 3D Action Recognition for training sample
selection. Specifically, researchers adopt an encoder–decoder
framework to embed skeleton sequences into a latent space,
where clustering information, combined with a margin-based
selection strategy using a multi-head mechanism, is utilized to
identify the most informative sequences in the unlabeled set for
annotation. However, the most representative skeleton sequences
may not necessarily be the most informative for the action
recognizer, as the model may have already acquired similar
knowledge from previously seen skeleton samples. To solve it,
we reformulate Semi-supervised 3D action recognition via active
learning from a novel perspective by casting it as a Markov
Decision Process (MDP). Built upon the MDP framework and
its training paradigm, we train an informative sample selection
model to intelligently guide the selection of skeleton sequences
for annotation. To enhance the representational capacity of the
factors in the state-action pairs within our method, we project
them from Euclidean space to hyperbolic space. Furthermore, we
introduce a meta tuning strategy to accelerate the deployment
of our method in real-world scenarios. Extensive experiments
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on three 3D action recognition benchmarks demonstrate the
effectiveness of our method.

Index Terms—Human action recognition, video analysis.

I. INTRODUCTION

HUMAN action recognition [1], [2], [3] aims to classify
actions from spatiotemporal sequences into a set of pre-

defined categories, and serves as a core component in various
applications such as activity understanding [4], interaction
modeling [5], and robotic control [6]. Based on the type of
input data, existing action recognition methods can be broadly
categorized into RGB-based [7], [8], [9], depth-based [10],
and 3D skeleton-based approaches [11], [12], [13]. Among
these data, 3D skeleton data, which represents the human body
as a set of keypoints in 3D space, has received increasing
attention in recent years [5], [14]. This is because, compared
to RGB or depth data, skeleton representations offer compact,
high-level descriptions of human motion and are generally
more robust to appearance variations, background clutter, and
viewpoint changes [15]. Furthermore, skeleton sequences can
be efficiently captured by commodity depth sensors, enabling
the development of numerous supervised methods to learn
spatiotemporal features for skeleton-based action recognition
[16].

Recently, with the rapid development of deep learning [9],
[19], [20], [21], deep neural networks [9], [22], [23], [24],
[25], [26] have been extensively explored for modeling spatio-
temporal representations of skeleton sequences in supervised
settings. Specifically, Recurrent Neural Networks have been
applied to capture temporal dependencies in action sequences
[20], while Convolutional Neural Networks have been adopted
by transforming joint coordinates into 2D maps [1]. Besides,
Graph Convolutional Networks have gained popularity due to
their strong performance in modeling the structured topology
of skeleton data [2]. Despite their promising results, these
methods typically rely on large-scale annotated datasets for
training [20]. However, obtaining accurate frame-level anno-
tations is often labor-intensive and requires annotators to
possess expert knowledge of human skeletons, which poses
significant challenges to scalability and generalization across
unseen actions or subjects [17].

To reduce the reliance on extensive annotations with-
out sacrificing recognition accuracy in skeleton-based action
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Fig. 1. Motivation of our method. Previous semi-supervised 3D action
recognition via active learning (S3ARAL) approaches [17] rely on margin-
based selection strategy that aims to identify representative samples. However,
such strategy may select samples with limited novel information, leading to
sub-optimal performance of the trained action recognizer. In contrast, we
propose a novel perspective by reformulating S3ARAL as a Markov Decision
Process (MDP) [18]. Within this framework, we train an informative sample
selection model to intelligently choose training samples that are more likely
to improve the action recognizer’s performance, thereby enabling the training
of a more effective model.

recognition, semi-supervised learning approaches have been
proposed, and received considerable attention. Specifically,
the semi-supervised setting assumes that annotated aux-
iliary classes are unavailable. Methods such as ASSL
[27], MS2L [28], and SC3D [29] aim to learn informa-
tive representations from both labeled and unlabeled data
while preserving classification performance. Nevertheless,
these methods typically overlook the fact that not all
labeled samples contribute equally to model training. Select-
ing the representative samples for annotation can enhance
classifier effectiveness while further reducing annotation
cost [17].

To address this issue, the previous work explores AL-
SAR by incorporating active learning (AL), which aims to
proactively select the most informative unlabeled samples
for annotation, with semi-supervised 3D action recognition
[17]. Specifically, AL-SAR first employs an encoder–decoder
framework to encode skeleton sequences into a latent space.
It then leverages the clustering information in this latent
space, together with a margin-based selection strategy built
on a multi-head mechanism, to identify informative skeleton
sequences in the unlabeled set for annotation. However, the
representative skeleton sequences may not always be the
most informative for the action recognizer, as the model may
have already learned similar patterns from previously labeled
samples. Consequently, selecting such redundant samples may
offer limited benefit and lead to sub-optimal performance for
the action recognizer. Hence, it is crucial to boost Semi-
supervised 3D Action Recognition via AL (S3ARAL) in a
more intelligent and effective manner.

In this paper, inspired by [30], we handle this problem from
a novel perspective by formulating S3ARAL as a Markov
Decision Process (MDP) [18] (see Figure 1). Within this
MDP framework, the action corresponds to selecting the
representative samples for annotation. Our key insight of
such formulation is that MDP and S3ARAL share a common
objective of maximizing long-term benefits: MDP aims to
maximize expected cumulative rewards, while S3ARAL seeks
to maximize action recognizer’s performance by selecting the

informative samples for annotation. Moreover, MDP offers
solid theoretical foundations [18] and has demonstrated its
capability to make informed decisions (action) in complex
state spaces across multiple domains, like robotics [31] and
Game AI [32]. Based on our formulation, we set the reward in
the MDP as the action recognizer’s performance improvement
among training stages, with the objective of maximizing
cumulative performance gain of the recognizer.

In addition, human skeleton data naturally form tree-like
graphs, where hierarchical relationships exist among joints. As
a result, directly computing features of the skeleton data in the
Euclidean space may fail to capture these structural properties
effectively. Motivated by the exponential volume growth of
hyperbolic space [33], which enables efficient representation
of hierarchical skeleton data, we project the factors in the
state-action space of our MDP formulation from the Euclidean
space to the hyperbolic space to enhance their representa-
tional capacity. Furthermore, when our method is deployed
in real-world scenarios, it typically requires re-training on the
enlarged labeled dataset, which can be time-consuming. To
address this issue, we design a meta-tuning strategy based
on meta learning [34] to improve the generalizability of the
proposed method, allowing a rapid deployment.

To ensure a fair comparison with the previous S3ARAL
method [17], we follow its experimental setup and conduct
experiments on three commonly used 3D action recognition
datasets: UWA3D Multiview Activity II [35], North-Western
UCLA [36], and NTU RGB+D 60 [14]. Extensive experiments
on these datasets validate the effectiveness of our method.

The main contributions are summarized as follows:
• Existing S3ARAL method often overlooks whether the

selected samples are informative for the action recog-
nizer, leading to sub-optimal performance of the trained
model. To address this issue, we approach the task from
a new perspective by formulating it as a MDP, and
design a novel training framework that directly links
the improvement of the recognizer’s performance with
the informativeness of the selected samples, enabling the
training of a more powerful action recognizer.

• To enhance the representational capacity of factors in
the state-action pairs of our MDP framework, we map
them from the Euclidean space to the hyperbolic space.
Besides, we introduce a meta tuning strategy to accelerate
the deployment of our method in real-world scenarios.

• We conduct extensive experiments on three 3D action
recognition datasets, where the results show that our
method effectively selects informative samples, enabling
the training of a high-performing action recognizer. More-
over, our method exhibits strong generalization ability and
consistently achieves state-of-the-art performance across
all three datasets.

II. RELATED WORK

A. Human Action Recognition

Existing human action recognition methods [3], [8], [12],
[13], [37] can be broadly categorized into two groups: RGB-
based methods [8] and skeleton-based methods [3], [12],
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[13]. Due to the compact yet informative nature of skeleton
sequences for representing human behavior, skeleton-based
action recognition has attracted substantial research interest.

Early skeleton-based action recognition methods explore a
variety of network architectures to process skeleton sequences.
For instance, Liu et al. [5] introduce a spatial-temporal LSTM
for skeleton-based action recognition, while Ke et al. [19]
propose converting skeleton sequences into grayscale images,
which are then fed into a CNN, benefiting from the advances
in deep learning [38], [39], [40], [41], [42]. Over time, graph
convolutional networks (GCNs) have emerged as a dominant
architecture for this task. Yan et al. [39] pioneer this direction
with ST-GCN, the first GCN-based framework for skeleton-
based action recognition. Building upon this, various enhanced
GCN models have been proposed, including AS-GCN [40],
and CTR-GCN [43]. More recently, transformer-based models
have gained popularity for this task. Several works [41],
[44] have proposed end-to-end transformer architectures for
skeleton-based action recognition, such as the 3Mformer [41]
and the UPS [44].

Different from these methods, this work tackles a relatively
new task: Semi-supervised 3D Action Recognition via Active
Learning. It selects informative human sequence data from
the unlabeled set through active learning and trains an action
recognizer based on the annotated samples.

B. Semi-Supervised Human Action Recognition

Semi-supervised learning for action recognition aims to
extract motion representations from unlabeled data by regu-
larizing features or solving pretext tasks. Many studies have
proposed semi-supervised methods tailored for unlabeled RGB
data [4], [45], [46]. Specifically, [45] focus on predicting
motion flows to learn video representations, while [4] intro-
duces a convolutional auto-encoder that separately captures
spatial and temporal information from raw videos. Leveraging
the observation that varying frame rates do not alter the seman-
tic meaning of actions, [46] designs a two-stream contrastive
model in the temporal domain to utilize unlabeled videos at
different playback speeds.

Although these methods achieve promising results on RGB
video data, they are less suitable for long-term skeleton
sequences. Unlike RGB videos, which contain rich appearance
and scene context, skeleton data primarily encodes human
motion. Thus, effectively capturing joint and bone movement
patterns is critical for semi-supervised skeleton action recogni-
tion. To this end, Zheng et al. [47] proposes a joint inpainting
approach to learn features from unlabeled skeleton sequences,
followed by the work of Si et al. [48]. However, such self-
supervised methods, which rely on inpainting key joints, fail
to capture holistic motion dynamics and are not well-suited for
GCN-based architectures. Lin et al. [28] introduce a multi-
task self-supervised framework for skeleton data, but their
model struggled to extract joint-bone fused features using a
network structure optimized for action recognition. Moreover,
[28], [47], and [48] still adopt RNN-based backbones, which
are suboptimal for capturing spatial-temporal dependencies.

In this paper, unlike previous semi-supervised skeleton-
based action recognition methods that often randomly select a

batch of samples for annotation to train the action recognizer,
we adopt active learning to select informative skeleton samples
for annotation.

C. Markov Decision Process

Markov Decision Process (MDP) has become the standard
model for studying how agents make optimal decisions in
uncertain environments [18], [31], [32], [49]. In recent years,
the emergence of deep reinforcement learning (DRL) [31]
has made solving complex high-dimensional MDP problems
possible. MDP based on DRL has been widely applied to
numerous practical problems including robotic control [32],
[49], medical decision-making [18], etc, demonstrating pow-
erful modeling capabilities and potential for solving complex
decision problems. In this paper, we are the first to formulate
semi-supervised 3D action recognition via active learning as
a Markov Decision Process (MDP), and we train an informa-
tive sample selection model within the MDP framework to
intelligently select samples for annotation.

III. METHOD

Given an unlabeled set of skeleton sequences and a lim-
ited annotation budget, the goal of the Semi-supervised 3D
Action Recognition via AL (S3ARAL) task is to iteratively
select the informative samples for annotation to maximize the
performance of the target action recognizer.

Motivated by the similarity in objectives between S3ARAL
and the Markov Decision Process (MDP)—where both aim
to maximize long-term returns, with S3ARAL focusing on
improving the action recognizer’s performance throughout the
active learning process and MDP targeting the maximization
of expected cumulative rewards—we propose a novel per-
spective by formulating S3ARAL as an MDP (Section III-B).
Specifically, we design a informative sample selection model
that selects informative yet diverse skeleton sequences for
annotation (Section III-C). Moreover, to enable quick adap-
tation to the enlarged labeled skeleton set during deployment,
we further introduce a meta tuning strategy based on meta-
learning [34] (Section III-D). We introduce the overall training
and testing of our method in Section III-E. The pipeline of our
method is illustrated in Figure 2.

A. Task Settings and Notation

To improve clarity, in this subsection we present the task
setting and introduce the notations of the key symbols used in
our method.

1) Task Settings: In this paper, we address the task of
Semi-supervised 3D Action Recognition via Active Learning
(S3ARAL). S3ARAL operates on datasets composed of multi-
dimensional time series that capture the coordinates of body
keypoints over time. We denote the dataset as X = {XU ∪

XL}, where XU and XL represent the unlabeled and labeled
subsets, respectively. Each sample xi ∈ X is a sequence
xi = [x1, x2, . . . , xT ], where xt ∈ R

p×d denotes the coordinates
of p keypoints at time t, and d is the dimensionality of the
keypoints (typically d = 3). The number of keypoints p may
vary across different datasets.
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Fig. 2. The overall pipeline of our method. In the task of semi-supervised 3D action recognition via active learning, given an unlabeled dataset and an annotation
budget, we divide the dataset into a labeled set, an unlabeled set, and a reward set. We then design an Informative Sample Selection Model (ISSM) to select
informative samples for annotation. The annotated samples are used to train the action recognizer. To ensure that the ISSM receives sufficient information for
effective sample selection, we carefully construct the state-action pairs. The state encodes the distribution gap between the labeled and unlabeled sets, along
with the budget consumption ratio. The action captures both the sample’s potential contribution to improving the action recognizer and its representativeness.
To enhance the expressiveness of the state-action representations for the skeleton-based action recognition task, we project them from the Euclidean space
to hyperbolic space. This is motivated by the exponential volume growth of hyperbolic space, which is well-suited for modeling the hierarchical structure of
human skeletons. The performance improvement of the action recognizer between consecutive iterations is treated as the reward for training the ISSM.

Specifically, in the S3ARAL task, all samples are initially
unlabeled, i.e., X = XU . With an annotation budget B, at the
t-th iteration, given an unlabeled set XU

t , a labeled set XL
t ,

and an action recognizer ARt, the S3ARAL method proceeds
as follows: (1) Assess the informativeness of the unlabeled
samples; (2) Select a batch of informative skeleton sequences
for annotation; (3) Transfer the selected samples from XU

t
to XL

t , and retrain the action recognizer ARt on the updated
labeled set XL

t+1 to obtain a new model ARt+1.
2) Notation: Next, we introduce the meanings of some key

notations used in our paper.
Skeleton Sequence. x = [x1, x2, . . ., xT ], where T is the

sequence length and xt ∈ R
p×d denotes the 3D coordinates

of p joints at time step t, with d = 3.
Dataset. X = {XU∪XL}, composed of labeled and unlabeled

subsets.
Budget. B, the maximum number of skeleton sequences that

can be annotated.
State. [M̃MDt(S L, S U), BC

t ] where M̃MDt is the hyperbolic
projection of the distribution gap and BC

t is the budget con-
sumption ratio.

Action. at, selection of a sample based on its state.
Reward. rt+1, the accuracy gain of the action recognizer

between iterations, measured on a reward set Xrwd.
Transition. (st, at, rt+1, st+1), which updates the labeled and

unlabeled sets.

B. Semi-Supervised 3D Action Recognition via Active
Learning as a Markov Decision Process

To solve the challenge Semi-supervised 3D Action Recog-
nition via Active Learning (S3ARAL) task, previous S3ARAL
method [17] encodes skeleton sequences into a high-
dimensional latent space and group the resulting latent
representations into clusters. Informative samples are then
selected for annotation based on their corresponding uncer-
tainty scores and their distances within the latent space
clusters in the feature space. However, representative skeleton
sequences may not always be the most informative for the
action recognizer, as the model may have already learned

similar patterns from previously labeled samples. Hence,
selecting such redundant samples may provide limited benefit
and result in sub-optimal recognition performance. To address
this, inspired by [30], we approach S3ARAL from a novel
perspective by formulating it as a Markov Decision Process
(MDP), motivated by their shared objective of maximizing
future returns. Besides, we treat the performance improvement
of the action recognizer as the reward in our MDP. Such for-
mulation enables a more intelligent sequence sample selection
strategy.

Below, we first provide an explanation of how to view the
S3ARAL task from the MDP perspective.

1) New Perspective on S3ARAL Task: In this paper, we
approach S3ARAL from the novel MDP perspective to enable
more intelligent sample selection for annotation. Specifi-
cally, the S3ARAL process is formulated as a MDP tuple
(st, at, rt+1, st+1), with the core steps reinterpreted as follows:
(1) State Estimation: Estimate the state st, which captures
the distributional discrepancy between the unlabeled set XU

t
and the labeled set XL

t at iteration t. (2) Action Selection:
Evaluate each state-action pair (st, at) to identify the infor-
mative skeleton sequence for annotation. (3) Environment
Transition: Update XL

t and XU
t to XL

t+1 and XU
t+1 by moving

the selected skeleton sequence from XU
t to XL

t . Retrain the
action recognizer ARt on the updated labeled set XL

t+1 to
obtain a new model ARt+1, and update the state to st+1. (4)
Reward Computation: Compute the reward rt+1 based on the
performance improvement of ARt+1 over ARt, evaluated on a
separate reward set Xrwd, to guide the agent’s update.

In this way, we reformulate S3ARAL task as a MDP, allow-
ing us to leverage the MDP framework with solid theoretical
foundations [31] to perform the S3ARAL task in a more
intelligent manner.

C. Informative Sample Selection Model for Semi-Supervised
3D Action Recognition via Active Learning

In the previous section, we introduce how the Semi-
supervised 3D Action Recognition via Active Learning
(S3ARAL) task can be viewed from the perspective of the
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Markov Decision Process (MDP). In this section, we present
the details of our proposed informative sample selection
model, which enables us to perform the S3ARAL task from
the MDP perspective.

In this work, we adopt the widely used Q-learning algorithm
[31] as our MDP framework, where the designed informative
sample selection model (ISSM), i.e., the agent in the MDP,
performs batch sampling to select skeleton samples for anno-
tation. Specifically, our ISSM evaluates each state-action pair
(st, at) and selects the action at with the highest associated
Q-value. By deriving the reward directly from the improve-
ment of the action recognizer, ISSM is trained to learn a
policy that maximizes both the cumulative reward and the
performance of the action recognizer. Besides, to support
ISSM in making informed decisions, we design a state-action
representation based on hyperbolic space [50]. This hyperbolic
state design provides exponential volume growth, making it
well-suited for representing the tree-like structure of human
skeletons in a compact and expressive manner [51].

Below, we sequentially introduce the design of the state,
action, and reward, along with the training strategy within our
MDP framework.

1) State: Intuitively, the state st should capture the distri-
bution gap between the labeled dataset XL

t and the unlabeled
dataset XU

t , enabling the agent to identify the informative
skeleton sequence that can mitigate the distribution shift
between XL

t and XU
t . The purpose of computing this distri-

bution gap is to make the training set more unbiased, thereby
increasing the likelihood that the trained action recognizer gen-
eralizes well to unseen cases. Besides, skeleton data naturally
form tree-like graphs, where hierarchical relationships exist
among joints [14]. Therefore, computing features in Euclidean
space may fail to capture these structural properties effectively.
In contrast, hyperbolic space exhibits exponential volume
growth, allowing for efficient representation of hierarchical
skeleton data. Hence, to enhance the representation of the
factors included in our state and action space, we transform
the computed distribution gap from the Euclidean space to
hyperbolic space.

Below, we first introduce how to compute the distribution
gap between the labeled and unlabeled datasets, followed
by the definition of hyperbolic space and the projection of
the computed distribution gap from the Euclidean space to
hyperbolic space.

i) Distribution Gap. To model the distributional drift
between the labeled dataset XL

t and the unlabeled dataset
XU

t , we treat them as two separate domains and measure the
domain gap accordingly. Specifically, we adopt the Maximum
Mean Discrepancy (MMD) to quantify the discrepancy, as
follows:

MMD(S L, S U) =

nLX
i=1

nLX
j=1

k(pi, p j)
n2

L
+

nUX
i=1

nUX
j=1

k(qi, q j)
n2

U

−

nLX
i=1

nUX
j=1

2 · k(pi, q j)
nLnU

, (1)

where S L and S U denote the feature space distributions of
XL

t and XU
t , respectively, and the computed MMD(S L, S U)

is a scalar representing the discrepancy between them. The
samples from S L and S U are denoted as p and q, respectively.
nL and nU are the numbers of samples in XL

t and XU
t . k(·) is

a radial basis kernel used to compute pairwise distances.
ii) Hyperbolic Space. Here, inspired by [33], we adopt the

Poincaré model [50] as the hyperbolic space. Specifically, an
n-dimensional Poincaré model, denoted as Bn

κ , is a Riemannian
manifold (Bn

κ , g
B
x ) with constant negative curvature κ < 0. The

Poincaré model is defined as:

Bn
κ =

�
x ∈ Rn : ||x|| < −

1
κ

�
, (2)

where ||· || denotes the Euclidean norm. The manifold is further
equipped with the Riemannian metric tensor gBx :

gBx =

�
2

1 + κ||x||2

�2

gE, (3)

where x ∈ Bn
κ and gE denotes the Euclidean metric tensor.

This formulation highlights the strength of hyperbolic space
in modeling hierarchical and structured data, where distances
grow exponentially, similar to a tree structure. Such a property
makes it particularly suitable for skeleton-based human action
recognition, as human motion inherently follows a multi-scale
hierarchical pattern.

iii) Projection to Hyperbolic Space. After introducing
definition of the hyperbolic space, which is more suitable
for modeling human skeletons, we then present how to
project the distribution gap computed in Euclidean space into
the hyperbolic space. Specifically, given the distribution gap
MMD(S L, S U) computed in Euclidean space, we follow [50]
to map it into hyperbolic space through the exponential map
expc

0(·) as:

M̃MD(S L, S U)

= expc
0
�
MMD(S L, S U)

�
= tanh(

√
c‖MMD(S L, S U)‖)

MMD(S L, S U)
√

c‖MMD(S L, S U)‖
. (4)

Here, M̃MD(S L, S U) in the above equation denotes the pro-
jected distribution gap MMD(S L, S U).

Moreover, the available budget in our MDP framework is
a critical factor for our ISSM to make effective selections. To
capture this, we incorporate the budget consumption ratio BC ,
which is an indicator of the remaining annotation resources,
into the state representation. Hence, our state st is defined
as [M̃MDt(S L, S U), BC

t ], capturing both the distribution gap
between the labeled and unlabeled sets and the current budget
status. This state representation guides the ISSM in selecting
the types of human skeletons that are beneficial for improving
the performance of the action recognizer.

2) Action: The action should ideally capture the potential
contribution of a specific unlabeled human skeleton when
it is added to the labeled set XL

t . Intuitively, by combining
the state and action representations, our ISSM is expected to
have sufficient information to evaluate each unlabeled human
skeleton and select the informative skeleton from the unlabeled
set XU

t for annotation. To this end, we associate each unique
skeleton x from the unlabeled pool XU

t with an action at in
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the action space At. Specifically, to facilitate the selection of
informative samples, we extract two types of features from
each unlabeled skeleton sequence: (1) the skeleton sequence’s
potential contribution to improving the action recognizer,
measured by its uncertainty. (2) the representativeness of the
skeleton sequence within the unlabeled dataset. Below, we
sequentially introduce the computation methods of these two
types of action representations.

We adopt the widely used marginal index (MI) to measure
the uncertainty [52]. Specifically, for a skeleton sample x,
MI quantifies the confidence gap between the most and the
second most probable action classes predicted by the action
recognizer, and MI(x) is calculated as:

MI(x) = 1 −
�

max
C

p(c | x) −max
C,c∗

p(c | x)
�
, (5)

where
c∗ = arg max

C
p(c | x). (6)

Here, C denotes all action classes, c∗ denotes the action
class with the highest predicted probability by the action
recognizer, and max

c,c∗
p(c | x) denotes the second highest

predicted probability.
We then present our parameterization of the skeleton

sequence representativeness. Specifically, we select represen-
tative samples with respect to the unlabeled set XU

t , by
leveraging the distribution of similarity scores, and introduce
a histogram-based representation R that encodes the cosine
similarity distribution between a sample x and the average
behavior of samples in XU

t across the feature space of the
action recognizer. Including such a factor in our action space
allows the ISSM to avoid repeatedly selecting representative
action sequences that have already been learned by the action
recognizer, thereby improving sampling efficiency.

It is worth noting that for the features in the action space,
we follow the approach used in the state representation and
project them from Euclidean space to hyperbolic space.

3) Reward: The reward serves as a metric to quantify the
benefit that a selected unlabeled skeleton sequence brings to
our action recognizer ARt at iteration t. To enable accurate
reward estimation, we reserve a reward subset Xrwd prior to
our active learning procedure. The reward rt+1 is defined as
the accuracy gain of the action recognizer on Xrwd, computed
as the difference in performance between ARt+1 and ARt. Note
that Xrwd is used solely for evaluation and is excluded from the
training of the action recognizer. With the reward signal rt+1,
our ISSM can be optimized to select the informative skeleton
sequence, thereby improving 3D action recognition accuracy
in the active learning iteration.

4) Training of the ISSM: To train our ISSM, we adopt
the Double DQN framework [31] and optimize the model by
minimizing the temporal difference (TD) error:

T D(θ, θ̂) = (ARt(st, at; θ) − rt+1

− γ · ARt+1(st+1, at+1; θ̂))2 (7)

Here, θ denotes the parameters of our ISSM, and θ̂ corresponds
to the parameters of the target (off-policy) model, which

maintains the learned Q-values and is periodically updated
with θ, following the Double DQN setup.

Overall, the carefully designed state and action spaces of
our ISSM, combined with the theoretically grounded MDP
training framework, enable our ISSM to more intelligently
select skeleton sequences for annotation.

D. Meta Tuning

When deploying our trained informative sample selection
mode (ISSM) to real-world scenarios, it typically requires
re-training on an enlarged labeled dataset. This re-training
process could be time-consuming due to the continuously
growing dataset size. To address this issue, we design a meta
tuning strategy based on meta-learning [34], which aims to
enhance the generalization ability of our ISSM and thereby
accelerates its deployment. Specifically, our proposed meta
tuning formulates the re-training of our ISSM on the expanded
labeled dataset as a meta-learning task, which consists of three
stages: virtual-train, virtual-test, and meta-update. We consider
our ISSM training in source dataset, i.e., training on the unex-
panded labeled dataset, as a virtual-train task, and re-trained
our ISSM on the expanded labeled dataset as a virtual-test
task. Virtual-test provides feedback on how to optimize the
ISSM in a manner that generalizes across different datasets.
Subsequently, the meta-update phase consolidates the feedback
from the first two phases and applies the actual parameter
updates to our model, resulting in improved generalization
capabilities that promote fast adaptation.

To simulate the meta tuning process, we partition initial
training dataset Xi into a smaller subset as the virtual-train
set Xvtr

i and a larger subset as the virtual-test set Xvte
i . Our

objective is to learn meta parameters θmt that can adapt
effectively to Xvte

i after being optimized on Xvtr
i . Specifically,

starting from randomly initialized meta parameters θmt, we
first update our ISSM on Xvtr

i to obtain θ∗mt. We then use the
updated ISSM parameterized by θ∗mt to perform active learning
on Xvtr

i and compute the meta loss, which is used to refine θ∗mt.
The meta loss is the Temporal Difference (TD) error:

T Dmt(θ∗mt) =

H−1X
t=0

(ARt(st, at; θ∗mt)

− rt+1 − γ · ARt+1(st+1, at+1; θ∗mt))
2. (8)

Here, H denotes the number of iterations in our meta tuning
process. After obtaining the meta loss T Dmt(θ∗mt), we update
the meta parameters according to:

θmt = θmt − β · ∇T Dmt(θ∗mt). (9)

Here, β is the learning rate for meta tuning. By minimizing
the meta loss T Dmt, we obtain the meta parameters θ∗mt that
enable fast adaptation to the virtual-test set Xvte

i using updates
from only the virtual-train set Xvtr

i .
Overall, the meta tuning strategy enhances the generaliza-

tion ability of our ISSM, thereby accelerating its deployment
in real-world scenarios.
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Algorithm 1 Overall Framework of the Proposed Method

E. Overall Training and Testing

In the previous sections, we formulate Semi-supervised
3D Action Recognition via Active Learning (S3ARAL) as a
Markov Decision Process (MDP), allowing us to leverage the
well-established MDP framework to perform S3ARAL in a
more intelligent manner (Section III-B). Then, we introduce
the informative sample selection model (ISSM) for selecting
skeleton data for annotation (Section III-C), as well as a
meta-tuning strategy to enable rapid adaptation of ISSM
in real-world scenarios (Section III-D). In this section, we
provide an overview of the training and testing procedures of
our method, along with an algorithm that outlines the overall
framework (see Algorithm 1).

1) Training: Given an unlabeled dataset X and an anno-
tation budget B, our method proceeds as follows: We first
randomly sample an initial subset Xi for annotation. Using
the labeled initial subset Xi, we then simulate the S3ARAL
process by partitioning Xi and training our ISSM. Specifically,
we divide the labeled initial set Xi into a labeled set XL

i ,
an unlabeled set XU

i , and a reward set Xrwd, and then allow
our ISSM to select the skeleton sequence as described in
Section III-C. Furthermore, once our ISSM is trained on Xi,
it can be deployed to perform the actual S3ARAL process on
the remaining unlabeled pool XU = X\Xi, until the annotation
budget B is exhausted. We refer to this stage as the deployment
phase, during which our ISSM selects batch skeleton data
{xn}Nn=1 from XU for annotation at each iteration, gradually
expanding the labeled pool XL = XL ∪ {xn}Nn=1 to update our
action recognizer AR. We initialize XL = Xi at the beginning
of this phase. Besides, to accelerate the deployment of our
method in the deployment phase, we design a meta tuning
strategy for our ISSM (Section III-D).

2) Testing: After deployment, our ISSM remains frozen and
automately selects samples for annotation.

IV. EXPERIMENTS

A. Evaluation Dataset and Metric

For a fair comparison, we follow [17] to evaluate our
method on three widely used benchmark datasets: UWA3D
Multiview Activity II (UWA3D) [35], North-Western UCLA
(NW-UCLA) [36], and NTU RGB+D 60 [14]. These datasets
vary in the number of action classes and include both cross-
view and cross-subject evaluation settings. We follow [17] and
use classification accuracy as the evaluation metric. Below, we
provide a detailed introduction to the three evaluation datasets
used in this work.

UWA3D consists of 30 human action categories, with each
action performed four times by ten subjects and recorded from
four viewpoints: frontal, left, right, and top. Following [17],
we use the frontal and left views for training and reserve the
right view for testing to ensure a fair comparison. This setup
presents a more challenging evaluation scenario due to the
increased view discrepancy.

NW-UCLA is collected using Kinect v1 cameras and con-
sists of 1,494 samples performed by 10 subjects. It includes
10 action classes, with each skeleton comprising 20 joints.
Following the evaluation protocol in [17], we use samples from
camera views 1 and 2 as the training set, while samples from
camera view 3 serve as the test set.

NTU RGB+D 60, captured with a Kinect v2 sensor,
is the largest publicly available benchmark for depth-based
action recognition, containing over 56,000 video sequences
and 4 million frames. It includes recordings from 80 different
viewpoints and covers 60 action classes, ranging from daily
activities and medical conditions to interactive actions, per-
formed by 40 subjects aged between 10 and 35. The dataset
poses considerable challenges due to large intra-class variation
and diverse viewpoints. Owing to its scale, it is particularly
suitable for deep learning-based activity recognition. Models
pre-trained on this dataset can be effectively fine-tuned on
smaller datasets, leading to faster convergence and improved
performance. In the NTU RGB+D 60 dataset, each sample
provides 3D coordinates of 25 body joints, offering rich
skeletal information for detailed analysis.

B. Baseline Methods

To ensure a comprehensive and fair comparison with pre-
vious Semi-supervised 3D Action Recognition via Active
Learning method, we follow the settings in [17] and compare
our approach with state-of-the-art (SOTA) active learning and
semi-supervised methods.

In particular, we compare our method against four repre-
sentative active learning approaches: uniform sampling [17],
core set selection [53], discriminator-based selection [54],
and consistency-based active learning under augmentation
[55]. Specifically, in uniform sampling, samples are randomly
selected for annotation from the entire dataset. Core-set selec-
tion aims to cover the feature space by choosing samples
that minimize the overall coverage radius. Discriminator-based
selection employs a discriminator to distinguish whether a
sample is labeled. Consistency-based active learning under

Authorized licensed use limited to: Wuhan University. Downloaded on November 16,2025 at 09:30:13 UTC from IEEE Xplore.  Restrictions apply. 



7342 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

TABLE I
QUANTITATIVE COMPARISONS WITH REPRESENTATIVE ACTIVE LEARNING METHODS (UNIFORM SAMPLING [17], CORE SET SELECTION [53],

DISCRIMINATOR-BASED SELECTION [54], AND CONSISTENCY-BASED ACTIVE LEARNING UNDER AUGMENTATION [55], AND AL-SAR [17]) ON
THREE COMMON 3D ACTION RECOGNITION DATASETS (UWA3D [35], NW-UCLA [36], AND NTU RGB+D 60 [14]) UNDER DIFFERENT

PROPORTIONS OF LABELED SAMPLES. “%LABELS” DENOTES THE PROPORTION OF LABELED SAMPLES RELATIVE TO THE TOTAL
NUMBER OF TRAINING SAMPLES IN THE DATASET, WHILE “#LABELS” INDICATES THE ABSOLUTE NUMBER OF LABELED

SAMPLES. “VIEW3” REFERS TO USING THE THIRD CAMERA VIEW OF THE MULTI-VIEW UWA3D DATASET AS THE
TESTING SET, WHILE THE REMAINING VIEWS ARE USED FOR TRAINING. “CS” STANDS FOR

“CROSS-SUBJECT”, MEANING THAT THE DATASET IS SPLIT BY SUBJECTS, WHERE THE ACTIONS
OF SOME SUBJECTS ARE USED FOR TRAINING AND THOSE OF THE REMAINING SUBJECTS ARE

USED FOR TESTING. THE RESULTS OF “OURS” ARE OBTAINED BY RUNNING OUR METHOD
FIVE TIMES. BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED

augmentation selects samples based on the consistency of
augmented skeleton sequences.

Besides, following [17], we compare our method with
three representative semi-supervised skeleton-based 3D action
recognition methods: ASSL [27], MS2L [28], and SC3D [29].
It is important to note that these methods assume access to
a pre-defined labeled set and do not address the problem of
active sample selection.

C. Implementation Details

For fair comparison, we follow [17] and adopt an encoder-
decoder architecture to encode skeleton data. Specifically,
our encoder consists of three-layer bi-GRU cells with 1024
hidden units in each direction. The hidden states from both
directions are concatenated into a 2048-dimensional latent
representation, which is then fed into the decoder. The decoder
is a uni-directional GRU with a hidden size of 2048. For a
fair comparison, we follow [17] and use the Adam optimizer
[56] to train the action recognizer. Both the encoder–decoder,
optimized with a reconstruction loss, and the action recognizer,
optimized with a classification loss, are trained simultaneously.
The learning rate is initialized to 10−4 and decayed by a
factor of 0.95 every 10 epochs on the UWA3D and NW-
UCLA datasets, and every 3 epochs on the NTU RGB+D 60
dataset. Our informative sample selection model (ISSM) is a
lightweight three-layer MLP. For a fair comparison, AL-SAR
and several active learning baselines adopt the same three-layer
MLP as the action recognizer, consistent with our method. We
also use the Adam optimizer [56] as its optimizer. The learning
rate for the ISSM is set to 1 × 10−4 across all three datasets:
UWA3D, NW-UCLA, and NTU RGB+D 60. Specifically, our
model is trained for 100 epochs on the UWA3D and NW-
UCLA datasets, and for 300 epochs on the NTU RGB+D
dataset. Our ISSM is trained for 50 epochs on the UWA3D and
NW-UCLA datasets, and for 100 epochs on the NTU RGB+D
60 dataset. The model is pre-trained in advance and kept frozen
during our Semi-supervised 3D Action Recognition via Active
Learning task.

D. Main Experiments

In the previous subsection, we introduce the evaluation
datasets and metric, the baselines for comparison, and the

TABLE II
WE COMPARE THE PERFORMANCE OF ACTION RECOGNIZERS TRAINED

ON SAMPLES OBTAINED THROUGH RANDOM SELECTION, AS
USED IN PREVIOUS SEMI-SUPERVISED ACTION RECOGNITION

METHODS (MS2L [28], AND SC3D [29]), WITH THOSE
TRAINED ON SAMPLES SELECTED BY OUR METHOD AND

AL-SAR [17],ON THE WIDELY-USED 3D ACTION
RECOGNITION DATASETS NTU RGB+D 60 [14]
UNDER DIFFERENT PROPORTIONS OF LABELED

SAMPLES. “%LABELS” DENOTES THE
PROPORTION OF LABELED SAMPLES
RELATIVE TO THE TOTAL NUMBER

OF TRAINING SAMPLES IN
THE DATASET, WHILE

“#LABELS” INDICATES THE
ABSOLUTE NUMBER OF

LABELED SAMPLES.
BEST RESULTS ARE

HIGHLIGHTED

implementation details of our method. In this subsection, we
present the comparison results of our method against state-of-
the-art (SOTA) active learning baselines on the three datasets,
i.e., UWA3D, NW-UCLA, and NTU RGB+D 60.

1) Comparison With SOTA Active Learning Methods: As
shown in Table I, we compare our method with previous state-
of-the-art active learning approaches on commonly used 3D
action recognition datasets under different numbers of labeled
samples. As can be seen in Table I, our method significantly
outperforms previous SOTA active learning methods. For
example, on the UWA3D dataset with 50 labeled samples,
our method achieves an accuracy of 39.1%, surpassing the
previous best method AL-SAR by 3.8%.

Authorized licensed use limited to: Wuhan University. Downloaded on November 16,2025 at 09:30:13 UTC from IEEE Xplore.  Restrictions apply. 



TU et al.: INFORMATIVE SAMPLE SELECTION MODEL FOR SKELETON-BASED ACTION RECOGNITION 7343

TABLE III
ABLATION STUDY ON OUR DESIGNED STATE (DISTRIBUTION GAP) AND ACTION REPRESENTATIONS (MARGINAL INDEX AND SKELETON SEQUENCE

REPRESENTATIVENESS) ACROSS THREE COMMONLY USED 3D ACTION RECOGNITION DATASETS (UWA3D [35], NW-UCLA [36], AND NTU
RGB+D 60 [14]) UNDER VARYING PROPORTIONS OF LABELED SAMPLES. “%LABELS” DENOTES THE PROPORTION OF LABELED

SAMPLES RELATIVE TO THE TOTAL NUMBER OF TRAINING SAMPLES IN THE DATASET, WHILE “#LABELS” INDICATES THE
ABSOLUTE NUMBER OF LABELED SAMPLES. BEST RESULTS ARE HIGHLIGHTED IN THE TABLE

TABLE IV

ABLATION STUDY ON OUR DESIGNED HYPERBOLIC REPRESENTATION ON THREE COMMON 3D ACTION RECOGNITION DATASETS (UWA3D [35],
NW-UCLA [36], AND NTU RGB+D 60 [14]) UNDER DIFFERENT PROPORTIONS OF LABELED SAMPLES. “%LABELS” DENOTES THE

PROPORTION OF LABELED SAMPLES RELATIVE TO THE TOTAL NUMBER OF TRAINING SAMPLES IN THE DATASET, WHILE
“#LABELS” INDICATES THE ABSOLUTE NUMBER OF LABELED SAMPLES. BEST RESULTS ARE HIGHLIGHTED

TABLE V

ABLATION STUDY OF OUR DESIGNED META TUNING ON THREE COMMON 3D ACTION RECOGNITION DATASETS (UWA3D [35], NW-UCLA [36],
AND NTU RGB+D 60 [14]) UNDER DIFFERENT PROPORTIONS OF LABELED SAMPLES. “TIME” DENOTES THE DURATION REQUIRED FOR THE

MODEL TO CONVERGE FROM THE START OF TRAINING. “#LABELS” INDICATES THE ABSOLUTE NUMBER OF LABELED SAMPLES. X AND
% REPRESENT WHETHER META-TUNING IS PERFORMED OR NOT, RESPECTIVELY

Our method also demonstrates strong robustness across
datasets of different scales, including the relatively smaller
UWA3D and NW-UCLA datasets, as well as the larger NTU
RGB+D 60 dataset. For example, on the large-scale NTU
RGB+D 60 dataset with 800 labeled samples, our method
achieves an accuracy of 51.3%, outperforming the previous
SOTA method AL-SAR, which achieves 47.6%, by 3.7%.
In addition, on the moderately sized NW-UCLA dataset, our
method consistently outperforms the prior SOTA method. For
instance, under the setting of 400 labeled samples, our method

achieves 87.9% accuracy, while AL-SAR only reaches 84.1%,
resulting in a 3.8% improvement. Moreover, as shown in
Table I, our method also exhibits strong robustness under
varying numbers of labeled samples within the same dataset.
For example, on the NW-UCLA dataset, our method achieves
64.3% accuracy with only 50 labeled samples, and maintains
high performance with more labeled samples, reaching 87.9%
accuracy with 400 samples.

In addition, we combine our method and AL-SAR with
two state-of-the-art semi-supervised skeleton-based action
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recognition methods, MS2L and SC3D, to select training
samples, and evaluate their performance on the NTU RGB+D
60 dataset (see Table II). Experimental results show that MS2L
and SC3D achieve better action recognition performance when
trained on samples selected by our method. For example, under
the 4,000 labeled samples setting on the NTU RGB+D 60
dataset, MS2L + AL-SAR achieves an accuracy of 67.0%,
while MS2L + Ours achieves 69.8%.

Overall, our method demonstrates strong robustness across
different datasets and labeling ratios, consistently outperform-
ing previous SOTA methods. We attribute this to the use of
a theoretically grounded MDP framework for training our
informative sample selection model, enabling more intelligent
sample selection.

E. Ablation Studies

In the previous subsection, we present the main experiments
of our work, comparing our method with previous SOTA active
learning methods on three widely used skeleton-based action
recognition datasets.

In this subsection, we first follow AL-SAR [17] to verify the
performance gains brought by the active learning framework in
our method. In addition, we analyze the impact of our state and
action space designs, the projection of representations from
Euclidean space to hyperbolic space, and the effectiveness of
the meta tuning strategy. Finally, we analysis the generalization
of our method.

We follow AL-SAR [17] to conduct our ablation studies
under the settings of 25 and 100 labeled samples on the
UWA3D dataset, 50 and 300 labeled samples on the NW-
UCLA dataset, and 400 and 2000 labeled samples on the NTU
RGB+D 60 dataset.

1) Impact of State and Action Space: As shown in Table III,
we conduct ablation studies on the distribution gap in the state
and the marginal index and skeleton sequence representative-
ness in the action across three commonly used skeleton-based
action recognition datasets. In the setting “Ours w/o Distribu-
tion Gap”, the state is randomly generated. The results show
that removing the Distribution Gap from the state leads to
a 10.8% drop in accuracy, demonstrating its effectiveness in
helping our method identify informative skeleton sequences
and train a better action recognizer.

From the experimental results of “Ours w/o Budget Con-
sumption Ratio BC”, we observe that incorporating BC into
the state leads to further performance improvements. We
attribute this to the ability of BC to help the method better
recognize the current learning stage of the model, which in
turn facilitates the selection of samples that are more suitable
for the corresponding training stage.

Furthermore, the ablation results on the action space confirm
the effectiveness of both the Marginal Index and Skeleton
Sequence Representativeness. These two factors are shown to
be complementary and jointly contribute to the performance
improvement of our method.

2) Impact of Hyperbolic Representation: To better classify
human actions based on skeletal data, we design a Hyperbolic
Representation tailored to the tree-like structure of human
skeletons for both state and action representations. Here, we

TABLE VI

QUANTITATIVE COMPARISONS WITH REPRESENTATIVE ACTIVE
LEARNING METHODS (UNIFORM SAMPLING [17], CORE SET
SELECTION [53], DISCRIMINATOR-BASED SELECTION [54],

AND CONSISTENCY-BASED ACTIVE LEARNING UNDER
AUGMENTATION [55], AND AL-SAR [17]) ON THREE

COMMON 3D ACTION RECOGNITION DATASETS (UWA3D [35],
NW-UCLA [36], AND NTU RGB+D 60 [14]) UNDER DIFFERENT

PROPORTIONS OF LABELED SAMPLES. “%LABELS” DENOTES
THE PROPORTION OF LABELED SAMPLES RELATIVE TO THE
TOTAL NUMBER OF TRAINING SAMPLES IN THE DATASET,

WHILE “#LABELS” INDICATES THE ABSOLUTE NUMBER OF LABELED
SAMPLES. “VIEW3” REFERS TO USING THE THIRD CAMERA

VIEW OF THE MULTI-VIEW UWA3D DATASET AS THE
TESTING SET, WHILE THE REMAINING VIEWS ARE USED

FOR TRAINING. “CS” STANDS FOR “CROSS-SUBJECT”,
MEANING THAT THE DATASET IS SPLIT BY SUBJECTS,
WHERE THE ACTIONS OF SOME SUBJECTS ARE USED

FOR TRAINING AND THOSE OF THE REMAINING
SUBJECTS ARE USED FOR TESTING. THE

RESULTS OF “OURS” ARE OBTAINED
BY RUNNING OUR METHOD FIVE TIMES

conduct an ablation study on this Hyperbolic Representation.
As shown in Table IV, applying the Hyperbolic Representation
leads to improved performance, demonstrating the effective-
ness of this representation space.

3) Impact of Meta Tuning: To accelerate the deployment
of our method in real-world scenarios, we introduce a meta
tuning strategy based on meta-learning [34]. Here, we conduct
an ablation study to evaluate its effectiveness (see Table V). In
the table, “Time” denotes the convergence time required for
training. As shown by the results, our meta tuning significantly
speeds up model convergence. For example, under the NTU
RGB+D 60 dataset with 2000 labeled samples, “X” converges
in only 2.5 hours, compared to 5.1 hours for “%”, achieving
nearly a 50% reduction in training time with comparable
accuracy. Moreover, across all three datasets, “X” consistently
achieves similar accuracy to “%” while reducing convergence
time by roughly half, demonstrating the robustness of the
proposed meta tuning strategy.

4) Generalization Ability: To demonstrate the generaliza-
tion capability of our method, we add new experiments.
Specifically, the newly added experiments evaluate the gen-
eralization of our Informative Sample Selection Model by
training it with 100 samples on the UWA3D VIEW3 dataset
and testing it on the NW-UCLA dataset. As shown in the
experimental results (see VI), our method surpasses previous
approaches even without being trained on the NW-UCLA
dataset, demonstrating its strong generalization ability.

V. CONCLUSION

In this paper, we propose a novel perspective for the semi-
supervised 3D action recognition via active learning task by
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formulating it as a Markov Decision Process (MDP), aiming
to address the limitation of previous margin-based selection
strategy that may fail to select samples that effectively enhance
the performance of the action recognizer. Specifically, we
leverage the theoretically grounded MDP framework to train
an informative sample selection model that intelligently selects
representative samples for annotation. To enhance the rep-
resentational capacity of the state-action pairs in our MDP
framework, we map them from the Euclidean space to hyper-
bolic space. Moreover, we explore a meta tuning strategy
based on meta-learning to accelerate the deployment of our
method in real-world scenarios. Extensive experiments are
conducted on three widely used 3D action recognition datasets:
UWA3D, North-Western UCLA, and NTU RGB+D 60. The
results show that our method yields greater improvements in
action recognizer performance compared to prior approaches
and exhibits strong generalization capability.
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